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T he amount of data acquired
electronically from patients
undergoing intensive care has
grown exponentially during

the past decade. Bedside equipment such
as pressure and flow transducers, infu-
sion pumps, pulse oximeters, cardiac out-
put monitors, and mechanical ventilators
store electronic data and are equipped
with computer interfaces. Modern bed-
side monitors communicate with a host
of devices through data busses and inter-
changeable, plug-in interfaces. Comput-
erized intensive care systems interface
with hospital databases including demo-
graphic systems, electronic patient
records, order-entry, laboratory, phar-
macy, and radiology systems.

It is useful conceptually to recognize
that bedside data must be extracted and
organized to become information, and
that an expert must then interpret this
information before it becomes knowledge
for diagnostic and/or therapeutic pur-
poses. This review is concerned primarily
with the second step in this cognitive

sequence, namely the use of computers
to extract information from data and en-
hance analysis by the human clinical ex-
pert. We will argue that an as yet unre-
alized role for the computer at the
bedside is the extraction of information
from data rather than mere display. A
variety of novel, computer-based analytic
techniques have been developed recently.
Our purpose is to introduce these tech-
niques and to discuss their potential for
clinical applications in the intensive care
unit (ICU).

A review of relevant literature cited in
MEDLINE was performed between the
years 1966 and the present using Ovid
software. The search terms “critical care”
and “intensive care” were exploded and
combined (18 and 423 “hits,” respectively).
The terms “data warehouse” (18), “neural
network” (4215), “genetic algorithm”
(238), “fuzzy logic” (431), “case-based
reasoning” (55), “belief network” (47),
and “data visualization” (42) were then
used as keywords to create individual data
sets comprising all references to the spe-
cific term. Each of these data sets was
then individually combined (AND func-
tion) with the critical care references. A
comprehensive review was made of all
references cited in both data sets. In

addition, the smaller data sets (e.g., belief
network) were thoroughly reviewed to
find abstracts or titles suggesting rele-
vance to critical care practice. Finally,
articles of historic significance (e.g., ref-
erences to MYCIN) and appropriate texts
were included for completeness.

Background

Nomenclature. It is useful to begin by
defining several terms that are commonly
used in describing computer systems
used for data analysis. A management
information system (MIS) has been de-
fined as “a formalized computer informa-
tion system that can integrate data from
various sources to provide the informa-
tion necessary for management decision
making” (1).

The appropriate definition of artificial
intelligence (AI) is controversial. Alan
Turing, the English mathematician, de-
vised what has become known as the Tur-
ing test of computer intelligence. He sug-
gested that a computer had artificial
intelligence if it could successfully mimic
a human and thereby fool another hu-
man.

An expert system is a computer pro-
gram that simulates the judgment and
behavior of a human or an organization
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with expert knowledge and experience in
a particular field.

Data mining is the analysis of data for
relationships that have not previously
been discovered. The techniques used for
data mining can discover hidden associ-
ations or sequences in data sets, cluster-
ing of data points, and permit visualiza-
tion of relationships among data or
forecasting based on hidden patterns.
Data mining is also known as knowledge
discovery, and derives its roots from sta-
tistics, artificial intelligence, and ma-
chine learning.

A data warehouse is a central reposi-
tory for all or significant parts of the data
that an enterprise’s various business sys-
tems collect. An alternative term is a data
mart.

The Data Stream. The establishment
of modern data-intensive ICUs can prob-
ably be traced to the introduction of
blood gas electrodes in the 1960s. The
outstanding developments in bioengi-
neering since then have resulted in an
impressive amount of data being reliably
available at the bedside. For the most
part, however, clinical practice has not
taken advantage of the rich, varied, and
continuous stream of information. De-
spite the wealth of electronically accessi-
ble data, the synthesis and interpretation
of information is done manually in many
of today’s ICUs with minimal preprocess-
ing. Nurses laboriously transcribe infor-
mation from monitors onto paper
records. Data are lost, creatively inter-
preted, averaged, and incorrectly tran-
scribed in the process. Additionally, al-
though a sicker patient requires more
nursing interventions with consequently
less time available for data transcription,
it is these patients for whom accurate
data are most useful to clinicians for ret-
rospective review and analysis.

There are several reasons for the du-
rability of what would seem to be archaic
methods of data acquisition and tran-
scription. Among the most often cited are
the legal and financial requirements for
documentation of human observations
and decisions. These requirements are
real and are not likely to change. They
mandate written chart entries at regular
intervals and at times of change, which
must be made and signed by the respon-
sible individual. The second basis for re-
luctance by clinicians is the failed prom-
ise of early expert systems, as discussed
below.

Management Information
Systems

Management information systems can
be categorized as depicted in Table 1. One
group of decision support systems is the
model-driven or rule-based expert sys-
tems (RBS). They are successful to the
extent that they are able to represent the
subject material accurately and interface
well with the user.

Rule-based systems can be thought of
as “top-down” systems. “Top-down” pro-
gramming begins with a complex prob-
lem and uses a reductionist approach,
breaking the problem down into its con-
stituent parts to arrive at the essential
components that characterize it. This ap-
proach can be used as a method for sim-
ulating the thinking processes of the hu-
man medical expert. In reality, however,
experts make rapid, often intuitive, diag-
noses by beginning with a few hypotheses
selected by experience, followed by clini-
cal or laboratory observations that fur-
ther refine the differential diagnosis.

Rule-Based (Expert) Systems. Some of
the first expert systems were developed
for medical care. Some notable early ex-
pert systems were the MYCIN (2, 3), ON-
COCIN (4, 5), and Internist/Quick Medi-
cal Reference (6, 7) systems. MYCIN and
ONCOCIN were designed at Stanford and
simulated the performance of consultants
in infectious disease and oncology respec-
tively. The Internist system was designed
at the University of Pittsburgh to repro-
duce the diagnostic behavior of an inter-
nist. Unfortunately, these pioneering sys-
tems have not been widely incorporated
into the practice of medicine. One author
suggests, “Artificial intelligence in medi-
cine (AIM) has not been successful—if
success is judged as making an impact on
the practice of medicine. Much recent
work in AIM has been focused inward
(sic), addressing problems that are at the
crossroads of the parent disciplines of
medicine and artificial intelligence. Now,

AIM must move forward with the insights
that it has gained and focus on finding
solutions for problems at the heart of
medical practice.” (8)

A variety of impediments have slowed
the general acceptance of medical expert
systems. They include the small margin
of acceptable error in medical practice,
the ready availability of experts in most
settings, and the complexity of regulatory
requirements. Many of these obstacles
may disappear in the future. Fewer ex-
perts are being trained, and expert sys-
tems may become cost-effective in cer-
tain environments. The performance of
expert systems could improve to the
point that they rival or exceed human
experts. Finally, increased acceptance of
telemedicine may lower the barriers to
acceptance of expert systems.

Data-Driven (Intelligent Assistant)
Systems. A second, newer generation of
decision support systems is data driven
(9). Data-driven systems (DDS) take ad-
vantage of the large quantity of data that
can be acquired electronically to “discov-
er” relationships and assume that future
behavior can be predicted from past be-
havior. They represent “bottom-up” sys-
tems in which the data generated by a
system is used to describe the character-
istics of the system. Data analytic tools
such as these are typically less ambitious
than expert systems in scope and scale,
less expensive to develop and maintain,
and well suited to act as intelligent assis-
tants to human experts.

It is useful to contrast the model-
driven and data-driven systems using a
familiar intensive care construct. A RBS
would include rules about the relation-
ship between pulmonary artery occlusion
pressure (PAOP) and cardiac output. The
rules would be based upon well-under-
stood and accepted physiologic principles
such as the Frank-Starling mechanism,
whereas a DDS might begin without pre-
conceptions and then discover the Frank-
Starling relationship for an individual pa-

Table 1. Decision support systems

Model Driven Decision Support Data Driven Decision Support

Monolithic Modular
Incorporation of a body of knowledge Self-learning
Designed to reproduce the expert Typically act as intelligent assistants to an

expert
All solutions are preprogrammed Capable of arriving at novel, unexpected

solutions or observations
Likely to require substantial maintenance as

medical knowledge evolves
Inherently autodidactic and therefore largely

self-maintained
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tient. Specific characteristics distinguish
the two approaches in this example. The
RBS embodies general rules about all pa-
tients: “If the pulmonary artery occlusion
pressure is less than or equal to 5 mm Hg
and if the cardiac output is less than 2
L/min, then give 10 mL/kg crystalloid.”
Conversely, the DDS is used to discover
the physiologic behavior of one individual
from data acquired during continuous
monitoring of that patient: “When Mr.
Smith’s PAOP decreases to less than 8
mm Hg, his cardiac output decreases to
less than 3 L/min.” The RBS imposes
structure on the data, whereas the DDS
derives structure from the data.

Data Mining. New methods of data
analysis and decision support have be-
come available in the past decade, which
have been euphemistically termed “data
mining.” The techniques of data mining
have evolved from and depend on previ-
ous generations of data analysis tools (Ta-
ble 2). Several different techniques are
commonly used in data mining, or data-
driven decision support. They include
data warehouses, neural networks, ge-
netic algorithms, Bayesian or belief net-
works, rule induction or case-based rea-
soning, and machine learning. Fuzzy
logic is another relatively new approach
to programming that permits ambiguity
in descriptions of data. Visualization
techniques display large amounts of data
in a comprehensive, comprehensible
fashion.

Data Warehousing. Data-driven deci-
sion support benefits from the creation of
a data warehouse and an online analytical
processing system (OLAP). Decision sup-
port systems consist of a well-organized
database (the data warehouse) and an ac-
cessible front-end (OLAP) that permits
flexible exploration and analysis of data
by a nonprogrammer.

The medical director of an ICU could
use an OLAP to acquire and analyze data
from a data warehouse to answer ques-
tions such as, “What is the length of stay
of patients admitted (to my ICU) with the
diagnosis of respiratory failure who are
ventilated for greater than 2 days.” Tra-
ditionally, questions such as these would
require a programmer to query a rela-
tional database using a structured query
language, which in turn presupposed that
the required data were available in a re-
lational database. Using an OLAP, an ad-
ministrator could answer the question at
whim using natural language rather than
a specifically designed computer pro-
gram. The administrator might then fol-
low-up (or “drill down” in the vernacular)
with a second question suggested by the
answer to the first, such as, “What was
the mortality of those patients?”

Although data warehouses are widely
implemented in industry, and to some
extent in hospital administration, they
are essentially unavailable in the inten-
sive care setting. Intelligent algorithms
have been developed to enhance the anal-
ysis, functionality or display of informa-
tion in the ICU as described below.

Neural Networks. Neural networks are
designed to mimic the performance of
the human brain. There are input nodes
(or neurodes), output nodes, and a vari-
able number of internal (or hidden) lay-
ers. The nodes are connected with differ-
ent architectures, but typically input
nodes are connected to hidden layer
nodes and they are in turn connected to
output nodes. As the neural network
learns from (or “trains on”) a data set, the
connection weights are adjusted. In ef-
fect, important connections are rein-
forced (positively weighted) and unim-
portant connections are punished
(negatively weighted). Data are fed into

the input nodes, processed through the
hidden layer(s), and the connection
weights to the output nodes are adjusted.

Neural nets are categorized based on
their learning paradigm. In supervised
networks, the outputs are known but the
importance of the relationship of a given
input to an output is unknown before
training. In an ICU, a neural network can
be used to explore the relationships
among several physiologic variables. For
example, Buchman used a neural net-
work to evaluate the relationship of sev-
eral demographic, pharmacologic, and
physiologic variables to ICU chronicity
(Fig. 1) (10).

In unsupervised networks, the outputs
are unknown and the system is encour-
aged to find interesting, often unsus-
pected, relationships among the data el-
ements in large data sets. For example, a
hypothetical unsupervised neural net-
work might make the novel discovery
that a hypotensive episode of greater than
an hour’s duration immediately following
cardiac surgery is highly correlated with
subsequent development of pancreatitis.

Neural networks have been used in the
ICU setting in a variety of fashions, but
most extensively for outcome prediction.
Neural networks have been shown to pre-
dict length of stay in the ICU (10–12).
Other neural network-based systems
were successful in predicting ICU mortal-
ity (11, 13–15).

Another common application of neu-
ral networks in the ICU is the real-time
analysis of waveforms such as the electro-
cardiogram and the electroencephalo-
gram. One neural network-based algo-
rithm identified cardiac ischemia with
high sensitivity based on analysis of the
ST segment (16), whereas another diag-
nosed myocardial ischemia in the emer-
gency department patient (17–20). Neu-

Table 2. Evolution of data analytic techniques

Technique Typical Question Format Necessary Technologies Products/Vendors Characteristics

Data collection
(1960–1970s)

How many patients were admitted
to the ICU last year?

Data stored on tape/disks IBM Retrospective, static data interrogation,
programmed queries

Data access (1980s) What was the mortality in our
coronary artery bypass (CABG)
last patients year?

Relational database and
structured query
language

Oracle, Sybase Retrospective, dynamic data
interrogation at record level,
programmed queries

Data warehousing
(1990s)

What was the CABG mortality last
year? 3 Drill down to those
patients with atrial fibrillation

Multidimensional databases
and online analytical
processing systems

Pilot, Microstrategy Retrospective dynamic data
interrogation at multiple levels,
natural language queries

Data mining
(emerging)

What’s causing the high rate of
atrial fibrillation in the ICU?

Massive data bases,
multiprocessor
computers

Lockheed, IBM Prospective, proactive information
delivery

ICU, intensive care unit.
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ral networks have also been used in the
analysis of electroencephalographic pat-
terns in children (21) and adults sedated
with midazolam (22). Finally, neural net-
works have been used to analyze hemo-
dynamic patterns in intensive care pa-
tients (23, 24).

Neural networks can reveal unex-
pected and otherwise undetectable pat-
terns in large data sets. The major weak-
ness in neural network solutions is the
fact that the methods by which a relation-
ship is discovered are hidden (or opaque)
and therefore not readily understood or
explained.

Genetic Algorithms. Genetic algo-
rithms were designed to find near opti-
mal solutions to complicated problems
using the principles of Darwinian selec-
tion. For example, genetic algorithms
have been used to find a near optimal
route for the salesperson who needs to
travel through several cities on a sales
trip. The so-called traveling salesperson
problem was once considered noncom-
putable as the number of cities became
large, but genetic algorithms provide a
best approximation as an answer. The
process of optimization involves the fol-
lowing: a) the creation of a number of
possible solutions; b) competition among
them using selection criteria (i.e., fastest
route, shortest route, least expensive
route); and c) the elimination of “bad”
solutions. Surviving solutions are then

permitted to mutate and cross-breed and
compete further. Ultimately, a highly de-
sirable solution is selected from the set of
all possible solutions. Note that because
they fail to explore all solutions, genetic
algorithms are quite efficient but cannot
ensure that the surviving solution is the
best possible choice.

An example of a hypothetical ICU
problem that might be susceptible to this
approach is the determination of an op-
timal staffing configuration for a group of
patients with different acuity or nursing
requirements. Genetic algorithms have
been used to determine the neural net
configuration that was most accurate in

predicting prognosis in a group of 258
ICU patients (14).

Fuzzy Logic. Strictly speaking, fuzzy
logic is not a data-driven analytic ap-
proach. Rather, it is a method of handling
data that permits ambiguity, and as a
result, it is particularly suited to medical
applications. One of the interesting iro-
nies of medical practice is that its practi-
tioners strive for objectivity and precision
while dealing with data that are inher-
ently imprecise.

Fuzzy logic has proven to be well
suited to a variety of industrial applica-
tions, and fuzzy control strategies are, in
many cases, more efficient than tradi-

Figure 1. Supervised neural network: Neural net-
work with three inputs, a hidden layer, and a
single output (O). The network is similar to one
that Buchman et al. (10) described for the pre-
diction of chronicity in the intensive care unit.
This network is supervised, i.e., it is trained
through feedback so that connections that create
desired outputs (better outcome prediction) are
reinforced (thicker connections). HR, heart rate;
BP, blood pressure.

Figure 2. Traditional vs. fuzzy classification schemes: Traditional classification of pulmonary artery
occlusion pressures into discrete sets compared to fuzzy classification using fuzzy sets. In the standard
classification scheme, any single pulmonary artery occlusion pressure (PAOP) (horizontal axis) has
full membership (vertical axis) in only one set (low [L], normal [N], high [H]). Conversely, a single
PAOP can have simultaneous partial membership in more than one fuzzy set (very low [VL], very high
[VH]). For example, when the occlusion pressure is 5.5 (dashed vertical line), it is classified into a
single classic set, whereas it is a “member” of two fuzzy sets (low and normal).
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tional alternatives. Fuzzy control systems
are used in applications as diverse as el-
evator control, intelligent sensors, cli-
mate control, and image stabilization in
video cameras.

Figure 2 shows the classically ac-
cepted categorization of PAOPs as low,
normal, and high. These sets are dis-
crete—any single PAOP is a member of
only one set. Fuzzy logic permits the use
of overlapping sets, and therefore simul-
taneous membership in more than one
set. Using fuzzy descriptors and control
logic in the ICU, very efficient infusion
controllers have been designed that use
fuzzy logical constructs like “if the blood
pressure is low, and the cardiac output is
low normal, give dopamine slowly.”

Fuzzy control processes have been
used for the administration of anesthetics
in the operating room (25–29). In the
ICU, fuzzy control strategies have been
designed for the administration of fluid
(30) and titration of oxygen therapy (31).
Fuzzy controllers have also been de-

signed for the administration of vasodila-
tors to control blood pressure in the peri-
operative period (32–36) and during
dialysis (37, 38). Fuzzy logic has been
used to control mechanical ventilation
(39, 40) and artificial hearts (41). Fuzzy
logic diagnostic strategies have also been
used in the ICU to analyze physiologic
data during a simulated cardiac arrest
(42), categorize oxygen destruction (43),
interpret EEGs (21), and to distinguish
real alarms from artifacts in preterm in-
fants (44).

Fuzzy logical systems are easy to con-
figure and tune. Unlike neural networks,
the logical constructs used in these sys-
tems are easy to describe and closely ap-
proximate the thinking processes used in
clinical decision making.

Machine Learning. Machine learning
algorithms create rules or classification
schemes by searching through data for
relevant patterns. Unlike neural net-
works, they generate rules and patterns
that can be evaluated and understood.

The success of machine learning al-
gorithms requires the creation of a data
set with independent and dependent
variables. The machine learning algo-
rithm is then used to explore the data
for interesting or unexpected relation-
ships.

Figure 3 shows the use of a machine
learning algorithm to determine the re-
lationship of five independent variables
(preoperative beta-blocker therapy, se-
rum magnesium level, serum potassium
level, central venous pressure, and medi-
astinal drain output) to the development
of atrial fibrillation (the dependent vari-
able) in postoperative coronary artery by-
pass patients.

Machine learning algorithms have
been designed to derive rules for intelli-
gent alarms on respiratory systems (45,
46).

Case-Based Reasoning. Case-based
reasoning is a method of arriving at so-
lutions by analogy. A case consists of a
series of attributes describing a situation

Figure 3. Data parsing by machine learning algorithm: A machine learning algorithm was used to partition this hypothetical database of cardiac surgical
patients and demonstrate the correlation between two independent variables (low serum potassium and absence of beta blockade) with the dependent
variable (atrial fibrillation). Y, yes; N, no.
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and a related solution. A series of repre-
sentative cases are accumulated into a
case base. The case base can then be ex-
amined by the use of probes or test cases
(to find all cases in the database like a test
case). The probe may use a subset of the
available attributes and constraints on
the available solutions to find a set of
analogous cases.

Case-based reasoning is well suited to
the derivation of solutions when there are
discontinuities in the case base. Case-
based reasoning might be used to find
cases similar to a hypothetical, newly pre-
senting, undiagnosed patient with rapidly
evolving encephalitis, acute respiratory
distress syndrome, and renal failure (Fig.
4). New diseases such as Hanta virus,
acquired immune deficiency syndrome,
and Legionnaire’s disease are discovered
through a process analogous to case-
based reasoning. Although a case data-
base might not contain a case with a
specific constellation of conditions, case-
based systems can extrapolate from other
patients with similar histories. Case-
based reasoning simulates the reasoning
processes of an expert who has a large

catalog stored in his brain and can rapidly
recall analogous cases.

Case-based reasoning approaches have
been used in the ICU to select a group of
patients with similar characteristics from
a demographic database (11). They have
also been used to select an antibiotic reg-
imen (47, 48) and to project the course of
renal function (49).

Bayesian (Belief) Networks. The
power of Bayes’ Rule has been exploited
to develop extremely powerful, readily
understood learning algorithms known
as Bayesian networks or belief networks.
They are versatile and have been used for
a wide variety of functions including mil-
itary applications such as the rapid iden-
tification of incoming military targets
(missiles, aircraft, vessels) and deploy-
ment of counterattacks. Belief networks
have also been used to assist computer
software support staff in diagnosing prob-
lems on help lines. In the latter applica-
tion, probability trees are constructed de-
scribing the potential etiologies of a
customer problem.

The initial design of a belief network
requires the configuration of a tree of

nodes describing the relationship of vari-
ables to one another. Figure 5 shows a
Bayesian logic tree in which the branches
describe the relationships among the
physiologic variables that determine sys-
temic oxygen delivery. An expert con-
structs a table describing the pretest
probabilities that a given combination of
heart rate and wedge pressure will result
in a given cardiac output. The network is
tuned (and probabilities recalculated) by
exposure to real data.

Bayesian networks are well suited to
the intensive care environment because
of their speed and comprehensibility
(transparency) in addition to the fact that
Bayes’ theorem is well understood and
accepted by modern physicians. Belief
networks have been used in the intensive
care unit to evaluate EEGs (50) and to
establish prognosis in patients with head
injuries (51).

Data Visualization. Data visualization
is a term used to describe the intelligent
depiction of information using proximity,
grouping, shape, color, animation, and
other techniques to enhance data com-

Figure 4. Case-based reasoning: In case-based reasoning, a probe (test case) is designed to query a
database for cases with similar attributes. Here a hypothetical test case has encephalitis, acute
respiratory disease (ARDS), and renal failure. Two other cases with similar attributes are retrieved, (1)
encephalitis, ARDS, hepatic and renal failure and (2)encephalitis, renal failure, myocardial infarction
and ARDS), whereas two other dissimilar cases (3 and 4) are not.

Figure 5. Architecture of a belief network: A be-
lief network describing the probabilities relating
several known variables to oxygen delivery in a
patient who lacks a pulmonary artery catheter. In
this example, the central venous pressure (CVP),
left ventricular ejection fraction (EF), heart rate
(HR), hemoglobin (HGB), and oxygen saturation
(O2sat) are known and fall into predefined
ranges. For example, the heart rate is known and
falls within the predefined normal range. There-
fore the probability that the heart rate is low or
high is zero, whereas the probability that the
heart rate is normal is one. The probabilities
characterizing the unknowns, e.g., cardiac index
(CI), depend on the probabilities of the parent
nodes (CVP, EF, and HR) at a given point in time.
The network can be configured with initial prob-
abilities by an expert and then tuned with real
data. The patient described in the current state of
this network has normal CVP, HR, and HGB, a
high EF and low O2sat and therefore has an 82%
probability of having normal oxygen delivery
(O2del).
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prehension by the observer. Figure 6
shows a multidimensional array using
three axes (x, y, z) and size to depict the
likelihood that a disease process will be
treated with a therapeutic modality.

Medical applications of visualization
techniques have largely been restricted to
three-dimensional anatomical recon-
struction for surgical applications. How-
ever, it is possible to use data visualiza-
tion for the display of hemodynamic data
(52). Data visualization techniques have
also been used in an attempt to improve
the depiction of medical data in the pa-
tient medical record (45, 53, 54).

CONCLUSIONS

There are a large variety of novel data
management tools that have become
available over the past decade. They vary
in their suitability to a given task, the
degree to which the achieved solution is
understandable (transparent or opaque),
and the ease of configurability. Because
of the data rich nature of the ICU, the
applications to which these techniques
can be applied are varied, ranging from
waveform analysis to outcome prediction.

There are obstacles to the rapid adop-
tion of the data analysis tools described in
this manuscript. Although OLAPs have
been widely adopted as business and fi-
nancial decision support systems, they
have essentially been ignored in clinical
decision support. There are examples of
medically oriented OLAP tools such as
Infomine (Infocure, Atlanta, GA), how-

ever this is a data mining tool designed
primarily to allow financial analysis of a
medical practice. The query tools avail-
able with clinically oriented critical care
information systems such as Picis Care-
Suite (Picis, Arlington, VA) and Sunrise
Critical Care (Eclipsys, Delray Beach, FL)
permit fixed format reports, retrospec-
tive, dynamic data interrogation, or pro-
grammed queries (Table 2). As patient
information databases mature and be-
come commonly available online, clini-
cally oriented OLAPs will almost certainly
become available. Greater physician lead-
ership in the design and implementation
of these systems will undoubtedly en-
hance the speed with which they are
adopted.

Many of the studies cited in this re-
view are small and can be characterized
as proofs of concept or feasibility rather
than true side-by-side comparisons of a
computer technique with the current
standard of care. In addition, medicine is
an appropriately conservative discipline,
and regulatory agencies such as the Food
and Drug Administration have stringent
requirements for the approval of new
drugs and technologies to protect the in-
dividual patient. Paradoxically, fuzzy con-
trol systems and neural networks are be-
ing used in automated trains and elevators,
helicopters, and even spacecraft.

It is unlikely that intelligent software
will replace the clinician in the way that
the original medical expert systems were
conceived. Future systems are more
likely to act as intelligent agents for spe-

cialized, complicated problems, and are
generally intended to enhance the perfor-
mance of a human expert. The applica-
tions described above vary in their suit-
ability to specific tasks, and it is likely
that they will be combined in the smart
intensive care unit of the future.

Neural networks and fuzzy systems
are particularly useful for waveform anal-
ysis. They will be integrated into bedside
monitors and continuously analyze wave-
forms for known patterns (cardiac isch-
emia, hypovolemia).

Fuzzy controllers will be integrated
into bedside devices such as fluid and
medication infusion devices, mechanical
ventilators, and dialysis machines.

Belief networks and neural networks
will be used in the development of smart
alarms that integrate multiple data
streams (hemodynamics, laboratory data,
other monitors), which display event
probability (e.g., developing sepsis or
acute respiratory distress syndrome).

Data visualization tools will permit
the clinician to interrogate and analyze
laboratory and hemodynamic trends in
an individual patient at a glance.

Case-based reasoning, machine learn-
ing algorithms, and visualization tools
will be used to analyze information from
data warehouses describing the charac-
teristic of an individual ICU. For example,
a mini-epidemic of infections attributable
to a resistant bacterial organism might be
identified and followed using tools such
as these.

Figure 6. Visualization used to summarize data. Visualization techniques are used here to demonstrate
that this hypothetical intensive care unit cares for a large number (big sphere) of head-injured patients
who are rarely in need of continuous dialysis, mechanical ventilation, or invasive hemodynamic
monitoring. ARDS, acute respiratory distress syndrome.

D ata-driven deci-

sion support

tools will permit

the busy clinician (physi-

cian, nurse, respiratory ther-

apist) to function more effi-

ciently, caring for more

patients more safely in much

the same way that these

same tools have been used to

enhance the efficiency of

business applications.
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Data-driven decision support tools will
permit the busy clinician (physician,
nurse, respiratory therapist) to function
more efficiently, caring for more patients
more safely in much the same way that
these same tools have been used to en-
hance the efficiency of business applica-
tions. Modern assembly lines are more
productive and make fewer errors than
ever before, partly through the applica-
tion of data-driven decision support (8).
Similar improvements can be expected in
and will be demanded of the medical in-
dustry in the immediate future.
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